29 research outputs found

    Visualising the Search Landscape of the Triangle Program

    Get PDF
    High order mutation analysis of a software engineering benchmark, including schema and local optima networks, suggests program improvements may not be as hard to find as is often assumed. 1) Bit-wise genetic building blocks are not deceptive and can lead to all global optima. 2) There are many neutral networks, plateaux and local optima, nevertheless in most cases near the human written C source code there are hill climbing routes including neutral moves to solutions

    Insights into the feature selection problem using local optima networks

    Get PDF
    The binary feature selection problem is investigated in this paper. Feature selection fitness landscape analysis is done, which allows for a better understanding of the behaviour of feature selection algorithms. Local optima networks are employed as a tool to visualise and characterise the fitness landscapes of the feature selection problem in the context of classification. An analysis of the fitness landscape global structure is provided, based on seven real-world datasets with up to 17 features. Formation of neutral global optima plateaus are shown to indicate the existence of irrelevant features in the datasets. Removal of irrelevant features resulted in a reduction of neutrality and the ratio of local optima to the size of the search space, resulting in improved performance of genetic algorithm search in finding the global optimum

    Search algorithms as a framework for the optimization of drug combinations

    Get PDF
    Combination therapies are often needed for effective clinical outcomes in the management of complex diseases, but presently they are generally based on empirical clinical experience. Here we suggest a novel application of search algorithms, originally developed for digital communication, modified to optimize combinations of therapeutic interventions. In biological experiments measuring the restoration of the decline with age in heart function and exercise capacity in Drosophila melanogaster, we found that search algorithms correctly identified optimal combinations of four drugs with only one third of the tests performed in a fully factorial search. In experiments identifying combinations of three doses of up to six drugs for selective killing of human cancer cells, search algorithms resulted in a highly significant enrichment of selective combinations compared with random searches. In simulations using a network model of cell death, we found that the search algorithms identified the optimal combinations of 6-9 interventions in 80-90% of tests, compared with 15-30% for an equivalent random search. These findings suggest that modified search algorithms from information theory have the potential to enhance the discovery of novel therapeutic drug combinations. This report also helps to frame a biomedical problem that will benefit from an interdisciplinary effort and suggests a general strategy for its solution.Comment: 36 pages, 10 figures, revised versio

    Landscape Encodings Enhance Optimization

    Get PDF
    Hard combinatorial optimization problems deal with the search for the minimum cost solutions (ground states) of discrete systems under strong constraints. A transformation of state variables may enhance computational tractability. It has been argued that these state encodings are to be chosen invertible to retain the original size of the state space. Here we show how redundant non-invertible encodings enhance optimization by enriching the density of low-energy states. In addition, smooth landscapes may be established on encoded state spaces to guide local search dynamics towards the ground state

    Fitness Landscape Analysis of Automated Machine Learning Search Spaces

    Get PDF
    The field of Automated Machine Learning (AutoML) has as its main goal to automate the process of creating complete Machine Learning (ML) pipelines to any dataset without requiring deep user expertise in ML. Several AutoML methods have been proposed so far, but there is not a single one that really stands out. Furthermore, there is a lack of studies on the characteristics of the fitness landscape of AutoML search spaces. Such analysis may help to understand the performance of different optimization methods for AutoML and how to improve them. This paper adapts classic fitness landscape analysis measures to the context of AutoML. This is a challenging task, as AutoML search spaces include discrete, continuous, categorical and conditional hyperparameters. We propose an ML pipeline representation, a neighborhood definition and a distance metric between pipelines, and use them in the evaluation of the fitness distance correlation (FDC) and the neutrality ratio for a given AutoML search space. Results of FDC are counter-intuitive and require a more in-depth analysis of a range of search spaces. Results of neutrality, in turn, show a strong positive correlation between the mean neutrality ratio and the fitness value

    Global Landscape Structure and the Random MAX-SAT Phase Transition

    Get PDF
    We revisit the fitness landscape structure of random MAX-SAT instances, and address the question: what structural features change when we go from easy underconstrained instances to hard overconstrained ones? Some standard techniques such as autocorrelation analysis fail to explain what makes instances hard to solve for stochastic local search algorithms, indicating that deeper landscape features are required to explain the observed performance differences. We address this question by means of local optima network (LON) analysis and visualisation. Our results reveal that the number, size, and, most importantly, the connectivity pattern of local and global optima change significantly over the easy-hard transition. Our empirical results suggests that the landscape of hard MAX-SAT instances may feature sub-optimal funnels, that is, clusters of sub-optimal solutions where stochastic local search methods can get trapped

    Sequential dynamical systems

    No full text
    corecore